
Kmni: Ethereum-Native Interoperability

Abstract

Ethereum’s adoption of the rollup-centric roadmap has created isolated execution

environments, dividing capital, users, and developers across rollup domains. Ad-

dressing these issues, Kmniwas developed to provide Ethereum-native interoper-

ability in a secure, performant, and globally compatible manner. Kmniestablishes

a new precedent for secure interoperability by deriving its cryptoeconomic security

from restaked $ETH. Building on its novel security framework, Kmnifeatures a

custom network architecture that is capable of verifying cross-rollup messages with

sub-second finality. Kmni’s design facilitates ease of use and development across

rollups with its emphasis on minimal integration requirements and the introduction

of a universal gas marketplace alongside the KmniEVM. By establishing Ethereum-n

ative rollup interoperability with minimal latency, Kmnialleviates the negative ex

ternalities associated with rollup fragmentation, enabling Ethereum to return to it
s role as a unified network for decentralized applications.

1 Fractured Blockchain Scaling

More than three years have elapsed since the
Ethereum community endorsed the rollup-centric
roadmap, marking the end of a comprehensive search
for a scaling solution that would enhance Ethereum’s
throughput without sacrificing security, performance,
or compatibility with the broader ecosystem. This
search began during Ethereum’s early development
stages, which were inherently motivated by a desire to
overcome the scalability and efficiency limitations ob-
served in previous blockchain designs. While shard-
ing was part of a long-term vision for scalability, the
initial architecture focused on foundational elements
that could later accommodate such advanced solu-
tions. Building on this foundation, Ethereum’s jour-
ney toward enhanced scalability saw the exploration
of technologies including payment channels, state
channels, and Plasma. This iterative process eventu-
ally culminated in the development of rollups, mark-
ing a significant advancement in Ethereum’s scaling
efforts.

cations. Rollups provide secure off-chain execution
environments by relying on Ethereum Layer 1 (L1)
for consensus on state updates. Importantly, rollups
also provide users with an uncensorable exit mecha-
nism for transferring their capital back to Ethereum
L1 in case of emergency. Leveraging Ethereum L1’s
robust security, rollups are free to optimize their ex-
ecution environments for performance and compati-
bility. From a performance perspective, rollups are
designed to reduce network congestion on Ethereum
and lower transaction costs for users. In terms of
compatibility, rollups’ Turing-complete nature and
support for multiple programming languages em-
power them to be adaptable to existing developer
tooling and infrastructure services. This lowers the
barrier to adoption for developers and enables them
to create execution environments tailored for different

By executing transactions off-chain and only
storing data and/or proofs on-chain, rollups scale
Ethereum in a secure, performant manner while en-
suring compatibility with smart contracts and appli-

use cases.
Despite these benefits, the rollup-centric approach

forces Ethereum to scale via isolated execution envi-
ronments. This creates a series of negative externali-
ties that degrade Ethereum’s network effects. The di-
vision of liquidity across multiple rollups diminishes
the capital pool accessible to applications, leading to
inferior economic properties compared to a unified

1

system. Consequently, distinct rollup environments
force users to interact with multiple application in-
stances across these isolated rollup economies.

For developers, this situation necessitates a shift
in focus towards managing distributed state between
environments rather than focusing on application
functionality and utility. This requirement stands
in stark contrast to the original design intentions of
the Ethereum Virtual Machine (EVM). The EVM is
engineered to abstract away the complexities of dis-
tributed state, even though it is operated by hundreds
of thousands of nodes on Ethereum L1 [1]. This ab-
straction empowers developers to program as if they
were dealing with a singular CPU and state ma-
chine, thereby simplifying application development
and minimizing the risk of potential software vul-
nerabilities. However, the dispersion of users across
rollups now requires developers to manage several
subcomponents of their applications across indepen-
dent rollups to access all of Ethereum’s users and
capital.

On our current trajectory, the expanding variety
of rollup designs and their growing adoption will only
exacerbate these issues. Consequently, Ethereum is
faced with an existential threat that requires a na-
tive interoperability protocol purpose-built to realign
Ethereum with its original vision of being a single,
unified operating system for decentralized applica-
tions.

2 Interoperability for Ethereum
Rollups

The purpose of any interoperability protocol is to ver-
ify the state of a source network and relay state up-
dates to destination networks. To reflect the funda-
mental properties of its rollup ecosystem, the ideal
Ethereum interoperability solution must provide this
service in a way that is also secure, performant, and
globally compatible with the Ethereum ecosystem.
To meet our security standards, the solution should
derive its security from the same source as Ethereum
rollups: Ethereum L1. To be considered performant,
the interoperability protocol must verify and process
cross-rollup messages with minimal latency. Finally,
for the protocol to be globally compatible, it must
enable applications to be Turing-complete across all
rollup environments, ensuring that applications are
not limited by the resource constraints of any single
rollup.

Interoperability protocols offer different security
guarantees depending on how they verify the state
changes of their supported networks. Existing pro-
tocol designs can be broadly classified according to

the four categories of verification as defined in Table
1 [2].

Table 1: Interoperability Verification Types

Natively verified systems offer the only fully trust-
less approach to interoperability. However, these sys-
tems are the most difficult to implement since they
require the security providers of the underlying net-
works to validate state changes. Given that rollups
obtain their security from Ethereum L1, the sole
method to establish a natively verified interoperabil-
ity solution for rollups is to use Ethereum L1 for val-
idating rollup state changes. This can be done with
smart contracts that use optimistic or zero-knowledge
verification mechanisms. However, the run times of
these processes on Ethereum L1 carry high costs and
latency with optimistic verification requiring a seven-
day challenge period and zero-knowledge verification
requiring several hours. As a result, Ethereum L1
does not meet our desired performance criteria and
compels us to explore alternative verification mecha-
nisms.

Similar to a strictly native approach, other inter-
operability solutions also fail to meet our three key
criteria. Solutions that rely on local verification pro-
vide strong security guarantees and can be applied
across various rollups, yet their inability to handle
arbitrary messages limits their application compat-
ibility. Optimistic approaches, which incorporate a
latency period for potential challenges, inherently do
not satisfy our performance requirement.

Externally verified systems are the only solution
that can support our desired performance and global
compatibility requirements. However, this approach
introduces trust assumptions tied to an external ver-
ifier set, thereby compromising on our security re-
quirement. To mitigate these trust assumptions, ex-
ternally verified systems can introduce cryptoeco-
nomic security measures that require the verification
set to commit capital that is at risk of being slashed
in the event of misconduct. Interoperability protocols
that choose to implement this model can be consid-
ered game-theoretically secure as long as the staked
value of their verifier set is greater than the value that
the verifier set can transfer in a single state transi-
tion period. However, existing solutions that use this
approach derive their cryptoeconomic security from a

2

native asset rather than Ethereum L1, making them
unfit for our security requirements. By devising a
method to extend Ethereum L1’s cryptoeconomic se-
curity to an external set of verifiers, we can fulfill our
security criteria and create a novel interoperability
solution that offers all three of our desired proper-
ties.

3 Kmni

The guiding principle of modular design theory is the

separation of a system into distinct, isolated compo-
nents, each optimized for a specific function. Ap-
plying this approach to existing interoperability solu-

tions, we created Kmni, a natively secured, externally

verified interoperability network that establishes a

new precedent in security, performance, and global
compatibility for the future of Ethereum’s modular

ecosystem.

Figure 1: KmniProtocol Overview

Kmnirealizes this vision by introducing a novel
network architecture tailored for low latency cross-
rollup communications and global compatibility with
Ethereum’s entire rollup ecosystem, underpinned

This design achieves sub-second cross-rollup message

verification while harnessing Ethereum’s industry-
leading cryptoeconomic security budget. Further-

more, Kmniis intentionally designed to be easily in-t
egrated with any rollup architecture and local rollup

application, while also providing a programmable

state layer for managing application deployments

across rollups. The following sections of this whitepa-

per will explore the architectural evolution of Kmni,
detailing how it fulfills our design requirements of se-
curity, performance, and global compatibility.

4 Security

Externally verified interoperability systems optimize
for performance and compatibility but compromise
on security guarantees. Their ability to easily con-
nect with various networks and offer rapid verification
allows them to provide a desirable user experience,
contributing to their widespread adoption through-
out the industry. However, securing these systems
has been a persistent challenge, with no clear solu-
tion that offers robust and stable security at scale.

The simplest method to secure an externally ver-
ified system is to rely on a trusted verifier set. While
straightforward to implement, this approach provides
minimal security, especially when verifiers remain
anonymous, thereby raising the risk of collusion. A
marginally better strategy involves using public enti-
ties as verifiers, relying on their reputation as a de-
terrent against collusion. Still, this method remains
vulnerable, as these entities can become targets for
attacks, particularly if a single entity controls multi-
ple verifiers. As a result, a number of protocols using
these trusted verification methods have fallen victim
to exploits, cumulatively costing the industry over $1
billion.

Improving upon the trusted verifier model, pro-
tocols can use cryptoeconomic security to introduce
a new dimension of security to an external verifier
set [3]. This approach has been attempted by sev-
eral prior networks but encounters inherent limita-
tions due to its reliance on the protocol’s native asset
for security. Under this approach, the scale of the
protocol’s security is directly tied to the demand for
the protocol’s asset, introducing reflexive dynamics
that result in unstable security guarantees. To estab-
lish a security model that is both stable and secure at
the scale of the modular ecosystem, it is essential to
derive cryptoeconomic security from a broader net-
work.

Prior to the advent of EigenLayer’s restaking, a
novel primitive that extends Ethereum L1’s cryp-

by the cryptoeconomic security of restaked $ETH. toeconomic security to external networks by reusing
staked $ETH from Ethereum’s consensus layer [4],
achieving this level of security was unattainable.

Now, restaking enables Kmnito leverage the cryptoe-
conomic security of Ethereum L1 for its own validator

set.

3

The cryptoeconomic security provided by
restaked $ETH, Ce, is given by the formula:

Ce =
2

n∑
P (Sv

3
v=0

)

• Sv = the amount of $ETH restaked by validator v

• P = the function mapping the amount of restaked
$ETH to validator power

• n = the total number of validators

With more than $100 billion securing the network,
Ethereum’s current security budget is an order of
magnitude larger than any other Proof of Stake (PoS)
network [5]. By leveraging restaked $ETH, a highly

liquid, low volatility asset, Kmni’s security achieves

significantly greater stability than its predecessors.

Moreover, by deriving security from Ethereum, Kmni
aligns its security base with the rollups it connects,
facilitating a security model that grows in tandem

with Ethereum’s modular ecosystem. By implement-
ing a cryptoeconomic security model using restaked

$ETH, Kmniestablishes a new paradigm for secure a
nd reliable interoperability across the entire indus-t
ry.

Figure 2: Security Overview

5 Performance

Having identified restaking as our desired security
mechanism, our focus shifts to building a performant
protocol architecture. Specifically, our goal is to cre-
ate an externally verified protocol that minimizes the
verification time for cross-rollup messages (XMsgs)
and is secured by restaked $ETH. The CometBFT
consensus engine (i.e. Tendermint) offers properties
that fulfill both of these requirements [6].

1. CometBFT delivers instant transaction finality,
thereby removing the need for additional confirma-
tions or concerns for block reorganizations within

Kmni. This makes Kmni’s finality time solely de-t

ermined by the time it takes for Kmnivalidators t
o reach consensus.

2. CometBFT also provides support for Delegated
Proof of Stake (DPoS) consensus mechanisms, a

natural fit for Kmnivalidators to accept restaked

$ETH delegations.

3. Finally, CometBFT is one of the most robust and
widely tested PoS consensus models that is used in
several production blockchain networks that each
secure billions of dollars.

Kmniuses CometBFT to process XMsgs accord-
ing to the sequence visualized in Figure 3. First,

Kmnivalidators operate full nodes for each rollup vir-
tual machine (VM) to check for XMsg requests. For

every rollup VM block that contains XMsg requests,

Kmnivalidators build an XBlock containing the cor-
responding XMsgs. During CometBFT consensus,

Kmnivalidators use the vote extension feature from

Cosmos’ second generation Application Blockchain

Interface (ABCI++) to attest to XBlock hashes [7].
Finally, external relayers re-package and deliver fi-
nalized XMsgs to their destination rollups. Through

this process, Kmniachieves sub-second XMsg finality

backed by previously unparalleled levels of cryptoe-
conomic security.

The XMsg verification process is designed with

a foundational security standard. Kmnivalidators

wait for XMsg requests to finalize on Ethereum L1 (2

epochs, ∼12 minutes) before attesting to their valid-
ity in consensus. However, this design is intentionally

decoupled from consensus so that low-latency final-
ity mechanisms can be used. Specifically, this can be

achieved using transaction insurance mechanisms on

a message’s source rollup or pre-confirmations from

technologies like shared sequencers [[8],[9]]. By sup-

porting these alternative finality mechanisms, Kmni
will deliver an end-user experience for cross-rollup

messaging that mirrors modern cloud-based applica-
tions.

4

Figure 3: XMsg Lifecycle

6 Global Compatibility 6.1 Rollup Diversity

Ethereum is still in the early phases of rollup de-
sign development. In the coming years, we antici-
pate the rollup ecosystem will proliferate in diver-
sity. Projects will develop more customized rollup

solutions, each tailored for specific functionalities and

performance needs, incorporating unique virtual ma-
chines, programming languages, and data availability

architectures. Understanding this progression, Kmni
is intentionally designed with minimal integration re-
quirements to ensure compatibility with any rollup

architecture, reflecting the distinct layer separations

within the Internet Protocol stack. Thus, Kmnipro-
motes innovation at the rollup level while functioning

as a global hub that connects the entire rollup ecosys-

To this point, we have established a framework for

creating a highly performant cross-network messag-
ing service with unparalleled security guarantees.

However, our ultimate goal for Kmniis to enable

all applications to become Turing complete across

all rollup environments. To accomplish this, Kmni
must be designed to support any rollup architecture.
It must also be backward compatible with existing

smart contract application instances on rollups, sim-
plifying the complexities associated with contract in-

tegrations and gas management. Finally, Kmnimust

be expanded to support a global orchestration layer

that alleviates the growing complexities of manag-
ing application deployments between rollup environ-
ments.

tem.

5

6.2 Universal Gas Marketplace

To support a diverse range of rollup architectures,

Kmnimust be capable of handling gas payments in

diverse assets, ensuring that users can interact with

any application regardless of where it is deployed. To

achieve this, Kmniintroduces a universal gas mar-
ketplace that simplifies the process of gas payments

across rollups. A ”pay at source” fee model is used

to support payments in the native asset of the source

network. Internally, these payments are converted

into $Kmni, serving as the currency for compensat-i
ng relayers that facilitate transaction processing on

the target rollup on behalf of users. Alternatively,
the protocol can accept $Kmnias a gas payment m

edium across all rollups. This design establishes $
Kmnias a gas abstraction primitive, allowing users to
obtain $Kmnion any rollup and use it to pay for gas
fees anywhere they transact. Using these mech-anis

ms, Kmni’s universal gas marketplace not only sim
plifies transactions across rollups but also drives de
mand for $Kmni, which correlates directly with th
e volume of cross-network communications facili-ta
ted by the protocol.

Figure 4: Universal Gas Marketplace

6.3 Backward Compatibility

around existing applications, allowing them to aggre-

Building on the foundation of Kmni’s universal gas

marketplace, the protocol is designed to offer back-
ward compatibility with existing rollup applications.

Specifically, applications can integrate Kmniwithout

modifying their existing contracts. Instead, applica-
tions can employ modified frontend instructions to as-

semble an XMsg that is directed to the KmniPortal c
ontract on the originating network. Subsequently,t

he Kmniprotocol takes over, processing XMsg re-qu
ests and executing their instructions on the tar-ge
t network on behalf of the originating application.A

s a result, Kmnieffectively functions as a wrapper

gate users and liquidity across all deployments.

Figure 5: Kmni’s Backward Compatibility

For developers seeking a higher degree of cus-

tomization and control, Kmnican be integrated di-
rectly into applications at the smart contract level
using bespoke cross-network function calls. This em-
powers developers to transmit any type of generic

message between rollups, thereby enhancing existing

rollup-based applications or enabling entirely new ap-
plications with native interoperability.

7 Powering Natively Global Apps

with the KmniEVM

While Kmniis designed with local rollup applica-
tions in mind, the growing diversity within the rollup

ecosystem is increasing the complexity associated

with managing these application deployments across

rollups. Much like how an operating system’s ker-
nel abstracts away the intricacies of a CPU’s sub-
resources, rollup application developers require a tool
responsible for orchestrating application state and

configuration across rollups in an efficient manner.
This removes the need for developers to think about

distributed state management and empowers them to

program cross-rollup applications as if they existed

within a single state machine.
To satisfy this requirement, Kmnimust transition

from simply facilitating rollup interoperability to pro-
viding an abstraction layer that allows developers to

program across all rollups from a single environment.
From a design perspective, this requires us to expand

Kmni’s current verification layer to offer its own ex-

ecution environment, the KmniEVM.

7.1 Network Architecture

To maintain compatibility with Ethereum’s estab-
lished ecosystem and developer tooling, it is essen-

6

tial for Kmnito adopt the EVM for its execution

environment. Additionally, given Kmni’s reliance on

CometBFT consensus for its cross-rollup messaging

service, we require a network architecture that com-
bines the EVM with CometBFT consensus without

compromising on the protocol’s performance or secu-
rity. However, previous frameworks for integrating

the EVM with CometBFT make performance trade-
offs in several areas, with key challenges like mem-
pool congestion and state translations between the

EVM and CometBFT impacting consensus efficiency

and limiting block times to around multiple seconds,
even after optimizations.

Figure 6: Kmni

We have developed a novel architecture that uses

Ethereum’s Engine API and ABCI++ to achieve our

goal of combining the EVM with CometBFT consen-
sus in a truly scalable manner. Drawing inspiration

from Ethereum’s PoS architecture, Kmninodes are

configured with a new modular framework based on

the Engine API. Kmni’s framework creates a clear

separation between its execution and consensus lay-
ers, thereby isolating the components that have bot-
tlenecked performance in previous designs.

Node Architecture

sus process extremely lightweight. The other major

issue with previous design frameworks was the pro-
cess of translating EVM state to a format that was

compatible with CometBFT. We solved this prob-
lem by adding an ABCI++ wrapper around the

CometBFT engine to handle state translation. Thus

Kmni’s Halo consensus client converts KmniEVM

blocks into single CometBFT transactions inserted

into consensus blocks. Since KmniEVM blocks are

represented as a single consensus layer transaction,

the only limiting factor for Kmni’s throughput is per-

Existing approaches use the CometBFT mempool
for handling transaction requests.
As activity onthe network increases,

this overloads the CometBFTmempool and compro
mises the network’s consensusspeed.

Kmniuses the Engine API to solve this prob-lem,
by moving the transaction mempool to the exe-

cution layer, thereby keeping the CometBFT consen-

formance of the EVM client itself.

Kmniimplements Integrated Consensus by inten-
tionally decoupling the two consensus sub-processes

prior to block finalization. For KmniEVM blocks,c

onsensus is achieved through standard CometBFT

procedures. During this process, Kmni

From our research, this novel framework for com-
bining the EVM with CometBFT is capable of sub-
second transaction finality at scale. To encourage

wider innovation and enable other teams to leverage

the best features of both Ethereum and Cosmos, we

have open sourced this codebase as a public good for

The flexibility provided by the Engine API means

execution clients can be substituted or upgraded

without breaking the system. As a result, Kmnisup-p

orts any existing Ethererum execution client such as

Geth, Besu, Erigon, and others, without specialized

modifications. This approach eliminates the risk of
introducing new bugs that are common with modi-

fied execution clients. Furthermore, Kmninodes can s

eamlessly adopt upgrades from any EVM client, en-s

uring ongoing compatibility with the Kmniconsen-su

s layer. Kmninatively supports recent upgrades lik
e dynamic transaction fees and partial fee burning fr

om EIP-1559, as well as future upgrades such as E

thereum’s introduction of proposer-builder separa-ti

on and transient storage. Kmniensures the highest le

vel of EVM equivalence by exactly mirroring the c

ode run by validators on Ethereum L1.

the industry [10].

7.2 Integrated Consensus

The addition of the KmniEVM requires Kmnivalida-
tors to simultaneously manage consensus procedures

for XBlocks as well as KmniEVM Blocks. To facili-
tate this, we have created a novel consensus process

referred to as Integrated Consensus. This approach

represents the culmination of Kmni’s design objec-
tives, enabling the network to achieve sub-second fi-

nality for both XBlock and KmniEVM Block verifi-c

ation in a single process, underpinned by the cryp-t

oeconomic security of Ethereum L1.

validators use

7

Figure 7: Integrated Consensus Process

ABCI++ vote extensions to append XBlock attesta-
tions to the proposed CometBFT block. By separat-

ing these processes, Kmnireduces resource overlap

for its validators and ensures that Integrated Con-
sensus remains lightweight.

7.3 Natively Global Applications

The KmniEVM reinstates Ethereum’s original vi-
sion of a unified operating system for decentralized

applications by providing a global orchestration layer

powered by the full scalability of Ethereum’s rollup

ecosystem. This equips developers with a new form

of infrastructure that simplifies application manage-
ment across diverse rollup environments and em-
powers them to build Natively Global Applications

(NGAs). This new category of applications func-
tions by dynamically propagating contracts and in-
terfaces to any rollup, allowing them to access all of
Ethereum’s liquidity and users by default.

through a single access point, without the need to
navigate between different networks. As the land-
scape of application management grows increasingly
complex, NGAs are positioned to become the new
standard application design for Ethereum’s modular

This approach to building cross-rollup applica-
tions not only streamlines the development process
but also minimizes the potential for smart contract
vulnerabilities that often arise from the intricacies of
working with distributed state. For users, NGAs pro-
vide the convenience of interacting with any rollup

ecosystem.

Figure 8: Natively Global Applications

8

8 Reinforced Security

Through the process of making Kmniglobally com-
patible with the entire Ethereum ecosystem, we have

functions as the gas resource powering NGAs on the

KmniEVM. These functionalities present an oppor-

tunity to reinforce Kmni’s cryptoeconomic security

$ETH. Effectively, the total cryptoeconomic security

of Kmniis determined by the combined staked value

of these two assets.
Using this dual staking model, the total cryptoe-

conomic security C of the system is given by the for-
mula:

C =

• n

2
m n

3
a=0 v=0

∑∑
Pa(Sa,v)

a v

• Pa = the function mapping the amount of asset a
staked to validator power

= the total number of validators

• m = the total number of unique staked asset types

The protocol will implement separate functions

for mapping existing stake to voting power and for

mapping existing stake to staking rewards. The

protocol dynamically incentivizes validators to con-
tribute more security from either restaked $ETH or

$Kmnidepending on market conditions.

By implementing this dual staking model, Kmni’s
security now scales across two dimensions. Restaked

abling it to grow in line with Ethereum’s own secu-

upon this base, expanding Kmni’s security alongside

its own network activity. Collectively, these two com-
plementary mechanisms provide robust and dynamic

security guarantees for Kmni, setting a new standard

for secure interoperability for the Ethereum ecosys-
tem.

• Sa,v = the amount staked by validator v for asset

9 Summary

The adoption of the rollup-centric roadmap has com-
mitted Ethereum to scaling across isolated execution

established two sources of demand for $Kmni. First, environments. While this approach is actively solving

$Kmniserves as the universal gas resource for fa- the network’s scalability challenges, it has fragmented

cilitating messages between rollups. Second, $Kmnicapital, users, and developers across a growing num-
ber of rollup domains. To solve these problems, we

created Kmni, an Ethereum-native interoperability

protocol that establishes low latency communications
model using staked $Kmniin addition to restaked across Ethereum’s rollup ecosystem.

In our quest to build the optimal interoperability
solution for Ethereum, we found that existing pro-
tocol frameworks failed to meet our criteria for se-

curity, performance, and global compatibility.
Thisprompted us to create a new design framewor

k forKmni, prioritizing security as the protocol’
s founda-tion. Through restaking,

Kmniderives cryptoeco-
nomic security from Ethereum L1 and uses it to se
-cure its externally verified network architecture. Th

e
integration of a dual staking model further strength-

ens this security architecture and positions Kmnias

a new benchmark for secure interoperability.
With a robust security framework in place, we

shifted our attention to optimizing Kmni’s perfor-
mance. Our goal was to implement a consensus mech-
anism capable of handling cross-rollup communica-
tions with minimal latency. Through the develop-
ment of a unique protocol architecture, incorporat-
ing technologies like CometBFT, ABCI++, and the

Engine API, Kmnivalidators achieve this goal by pro-
viding sub-second verification for cross-rollup mes-
sages.

In terms of global compatibility, Kmniwas inten-
tionally designed with minimal integration require-
ments to make it compatible with any rollup archi-
tecture and application design. The introduction of

$ETH anchors Kmni’s security to Ethereum L1, en- a universal gas marketplace simplifies the user expe-
rience for cross-network applications, while the ad-

rity budget. The addition of staked $Kmnibuilds dition of the KmniEVM provides developers with
a global platform for deploying and managing cross-
rollup applications.

Kmnirepresents a comprehensive interoperability

solution for Ethereum rollups and is poised to reunify

the Ethereum ecosystem. With Kmni, Ethereum can

once again provide a single, unified operating sys-
tem for decentralized applications, but this time, at

a global scale.

9

